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Abstract
We derive the normally ordered expansion formulae of 1

X̂n
and 1

P̂ n
by virtue

of the method of integral within an ordered product of operators in the sense
of the principal value integral, where X̂, P̂ are the coordinate and momentum
operator, respectively. Application of the new formula is briefly discussed.

PACS numbers: 02.30.Tb, 03.65.Fd

1. Introduction

It is well known that the normally ordered expansion of operators is very useful in calculating
their coherent state expectation values [1]. In [2] and [3] we have proposed the method
of integral within an ordered product (IWOP) of operators, by which one can derive the
normal product form of many operators in a neat and easy way. For example, we have
shown the normally ordered expansion of exp(f X̂2), where X̂ is the coordinate operator,
X̂ = (a + a†)/

√
2, [a, a†] = 1 is the basic bosonic commutator. Using the Fock space

expansion of the coordinate eigenvector

|x〉 = π− 1
4 exp

[
−x2

2
+

√
2xa† − a†2

2

]
|0〉 X̂|x〉 = x|x〉 (1)

as well as the normal ordering of the vacuum state projector

|0〉〈0| = : e−a†a : (2)

and the completeness relation [4]∫ ∞

−∞
dx|x〉〈x| = 1 (3)
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we obtain

exp(λX̂2) =
∫ ∞

−∞
dx eλx2 |x〉〈x| =

∫ ∞

−∞

dx√
π

: exp[−(x − X̂)2 + λx2] :

= : exp

[
λ

1 − λ
X̂2

]/ √
1 − λ : Re λ < 1. (4)

This method is also quite useful in other aspects: for instance, it enables one to directly derive
the normally ordered single-mode squeezing operator by simply performing the following
integral:

1√
µ

∫ ∞

−∞
dx|x/µ〉〈x| (5)

where µ is the squeezing parameter. In this work, we shall derive the normally ordered
expansion of the operator X̂−n, in particular the one-dimensional Coulomb-like potential X̂−1.
In the literature before, only the result

1

X̂
= 1

ih

∫ p

−∞
dp′ (6)

was given, since X̂ → i d
dp

(a derivative in the momentum representation 〈p|), so 1
X̂

is an
integral operation in the same representation. But to our knowledge, how to deduce the
normally ordered expansion of X̂−1 has not been reported before. In addition to the lack
of an efficient way to carry out normal ordering, the difficulty may also lie in a singularity
appearing in X̂−1|x = 0〉. To circumvent this difficulty, in this work we shall make use of the
general definition of inverse operators that successively acting on the original operator and
its inverse operator should be equal to an identity operator. So, we expect that the identity
X̂ 1

X̂
= 1

X̂
X̂ = 1 should serve as a criterion to check the validity of our normally ordered

expansion of 1
X̂

. Indeed, as we shall see later, an explicit calculation of X̂ 1
X̂

and 1
X̂

X̂ in
the normally ordered form is made to prove that our result does satisfy this criterion and hence
justifies its validity. After many attempts in derivation, we find that it is the principal value
integral and the IWOP technique that can yield the correct result. The use of principal
value integral here is analogous to its wide use in the calculation of various propagators in
quantum field theory.

2. Normal ordering expansion of 1
X̂

gained via principal value integral within ordered
product of operators

By using (3) we may encounter the integral

1

X̂
=

∫ +∞

−∞
dx

1

x
|x〉〈x|. (7)

Strictly speaking, a mathematical integral with a pole on the contour does not exist. Yet one
may recall that in deriving various propagators in quantum field theory people successfully
used the principal value integral and contour integral prescription when they met singularities
and checked the outcome to ensure its validity and agreement with boundary conditions. Thus
we are motivated to do the same thing here. For a simple pole at x = 0 on the real axis in (7),
we define the Cauchy principal value integral, i.e.

1

X̂
= : lim

A→∞,ε→0+

1√
π

∫ −ε

−A

dx
exp[−(x − X̂)2]

x
+

1√
π

∫ A

ε

dx
exp[−(x − X̂)2]

x
: . (8)

As we shall check later, the normally ordered expansion obtained integral of (8) does satisfy
the criterion X̂ 1

X̂
= 1

X̂
X̂ = 1. Letting x = −t in the first term, equation (8) becomes
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1

X̂
= : lim

A→∞,ε→0+

1√
π

∫ ε

A

dt
exp[−(t + X̂)2]

t
+

1√
π

∫ A

ε

dx
exp[−(x − X̂)2]

x
:

= : lim
A→∞,ε→0+

1√
π

∫ A

ε

dx
−exp[−(x + X̂)2] + exp[−(x − X̂)2]

x
:

= :
1√
π

∫ +∞

0
dx e−x2 exp[2xX̂] − exp[−2xX̂]

x
exp[−X̂2] : . (9)

Now the integral converges at both x = 0 and x → +∞. It then follows:

1

X̂
= :

1√
π

∞∑
k=0

22k+2

(2k + 1)!

(∫ +∞

0
dx e−x2

x2k

)
X̂2k+1 exp[−X̂2] :

= :
1√
π

∞∑
k=0

22k+1

(2k + 1)!

(∫ +∞

0
dt e−t tk−

1
2

)
X̂2k+1 exp[−X̂2] :

= :
1√
π

∞∑
k=0

22k+1

(2k + 1)!
�

(
k +

1

2

)
X̂2k+1 exp[−X̂2] : (10)

where we have used the well-known formula∫ +∞

0
dt e−t tν−1 = �(ν) Re(ν) > 0. (11)

Employing the combinatorial formula [5] (see appendix A)
n∑

k=0

x

k + x
(−1)k

(
n

k

)
= 1(

n+x

n

) (
λ

k

)
= λ(λ − 1) · · · (λ − k + 1)

k!
k is an integer

(12)

and �
(
k + 1

2

) = √
π2−k(2k − 1)!! we can further simplify (10) as

1

X̂
= :

∞∑
k=0

2

(2k + 1)k!
X̂2k+1

∞∑
m=0

(−1)mX̂2m

m!
:

= :
∞∑

n=0

n∑
k=0

2(−1)n−k

(2k + 1)k!(n − k)!
X̂2n+1 :

= : 2
∞∑

n=0

(
n∑

k=0

1
2

k + 1
2

(−1)k
(

n

k

))
(−1)n

n!
X̂2n+1 :

= : 2
∞∑

n=0

1(
n+1/2

n

) (−1)n

n!
X̂2n+1 : (13)

which is neat and concise. Or we can rewrite (13) as

1

X̂
= : 2

∞∑
n=0

(−1)n(
n + 1

2

)(
n − 1

2

) · · · 3
2

X̂2n+1 : = :
√

π

∞∑
n=0

(−1)n

�
(
n + 3

2

) X̂2n+1 : . (14)

From equation (14) we see that the operator 1
X̂

is not ill-defined in Fock space as one might

think. Operating 1
X̂

directly on the vacuum state we have
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1

X̂
|0〉 = 2

∞∑
n=0

1(
n+1/2

n

)(
n+1/2

n

) (−1)n

n!
(a†/

√
2)2n+1|0〉 =

√
2

∞∑
n=0

(−1)n

√
(2n)!!

(2n + 1)!!
|2n + 1〉

(15)

which is a superposition of odd number states.

3. Checking the validity of (15)

In order to confirm the above result we multiply the two sides of (14) by X̂, or 1√
2
(a + a†),

X̂
1

X̂
=

∞∑
k=0

(−1)n

(2n + 1)!!
{a : (a + a†)2n+1 : + : a†(a + a†)2n+1 :}

=
∞∑

n=0

(−1)n

(2n + 1)!!

{
: (a + a†)2n+2 : + : (2n + 1)(a† + a)2n :

}

= :
∞∑

n=0

(−1)n

(2n + 1)!!
(a + a†)2n+2 : + :

∞∑
n=1

(−1)n

(2n − 1)!!
(a† + a)2n : +1 = 1 (16)

where we have used the commutator

[a, : f (a, a†) :] = :
∂

∂a†f (a, a†) : (17)

with :f (a, a†) : taking the particular function : (a + a†)2n+1 :. Similarly, using the commutator

[: f (a, a†) :, a†] = :
∂

∂a
f (a, a†) : (18)

we can confirm 1
X̂

X̂ = 1. In this way, we have checked the validity of the normally ordered
expansion of the inverse of coordinate operator.

4. Normally ordered expansion of X̂−n

To derive the normally ordered expansion of X̂−n, we note that there exists an identity [6]

d

dX̂
: X̂n : = :

d

dX̂
X̂n : (19)

(see appendix B). Hence we can obtain the normally ordered expansion of higher power of 1
X̂
,

1

X̂n
= (−1)n−1

(n − 1)!

(
d

dX̂

)n−1 1

X̂

= √
π

(−1)n−1

(n − 1)!
:

∞∑
m=0

(−1)m

�
(
m + 3

2

) (
d

dX̂

)n−1

X̂2m+1 :

= √
π(−1)n−1 :

∞∑
m= [n−1]

2

(−1)m

�
(
m + 3

2

)(
2m + 1

n − 1

)
X̂2m−n+2 :

= √
π(−1)n :

∞∑
m= [n−1]

2

(−1)m

�
(
m + 1

2

)(
2m − 1

n − 1

)
X̂2m−n : . (20)
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Comparing (20) with the normally ordered expansion of X̂n

X̂n = 1√
π

[n/2]∑
l=0

�

(
l +

1

2

)(
n

2l

)
: X̂n−2l :

we find that they bear some formal correspondence corresponding to n → −n. In particular,
when n = 2,

1

X̂2
= √

π :
∞∑

m=0

(−1)m+1(2m + 1)

�
(
m + 3

2

) X̂2m : . (21)

5. Application of (15)

Here we consider a harmonic oscillator perturbed by a potential 1
X̂

,

H = P 2

2
+

1

2
X̂2 + λ

1

X̂
(22)

where λ is small. As one can see from (14) that 1
X̂

is not ill-defined in Fock space, so this
Hamiltonian makes sense in Fock space too. If the unperturbed state is in a coherent state

|z〉 = exp

[
za† − 1

2
|z|2

]
|0〉 (23)

then

〈z| 1

X̂
|z〉 = √

π

∞∑
n=0

(−1)n

2n+1/2�
(
n + 3

2

) (z + z∗)2n+1. (24)

In summary, we have derived the normally ordered expansion formula of 1
X̂n

by virtue of
the IWOP technique in the sense of the principal value integral, which are the supplement of
the expansion of X̂n. Needless to say, one can obtain the normally ordered expansion of 1

P̂ n

in the same way,

1

P̂
= : 2

∞∑
n=0

1(
n+1/2

n

) (−1)n

n!
P̂ 2n+1 : . (25)
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Appendix A

Using the induction method, formula (12) can be proved as follows: letting Tn ≡∑n
k=0

x
k+x

(−1)k
(
n

k

)
, we have T0 = 1,

Tn = 1 +
n∑

k=1

x

k + x
(−1)k

(
n

k

)

= 1 +
n−1∑
k=1

x

k + x
(−1)k

((
n − 1

k

)
+

(
n − 1

k − 1

))
+ (−1)n

x

n + x
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= Tn−1 +
x

n

n∑
k=1

(−1)k
(

n

k

)
k

k + x

= Tn−1 +
x

n

{
n∑

k=1

(−1)k
(

n

k

)
−

n∑
k=1

(−1)k
(

n

k

)
x

k + x

}

= Tn−1 − x

n
Tn. (26)

Therefore, we immediately obtain the recurrence relation,

Tn = n

n + x
Tn−1 = n

n + x

n − 1

n + x − 1
Tn−2 = · · · = n!

(n + x)(n + x − 1) · · · (x + 1)
T0 = 1(

n+x

n

) .

(27)

Appendix B

To prove equation (19), we recall the mathematical formula [7]∫ ∞

−∞

dx

π
exp[−(x − y)2]Hn(x) = (2y)n (28)

where Hn denotes the nth Hermite polynomials. It then follows:

Hn(X̂) =
∫ ∞

−∞
dx|x〉〈x|Hn(x)

=
∫ ∞

−∞

dx

π
: exp[−(x − X̂)2]Hn(x) : = 2n : X̂n : . (29)

Compare it with the well-known recurrence relation of the Hermite polynomials,

H
′
n(x) = 2nHn−1(x) (30)

we see
d

dX̂
: X̂n: = 2−n d

dX̂
Hn(X̂) = n21−nHn−1(X̂) = n : X̂n−1 : = :

d

dX̂
X̂n :

thus (19) really holds.
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